Well-posedness of l-set optimization problem under variable order structure
نویسندگان
چکیده
The concepts of well-posedness of l-set optimization problem under variable order structure are introduced, the metric characterizations and sufficient criteria of well-posedness of a l-set optimization problem are proposed, and the equivalent relations between the well-posedness of l-set optimization problem and that of a scalarization minimization problem are established. Finally, by discussing the lower semi-continuity and convexity of gap functions of l-set convex optimization problems, their well-posedness of are investigated.
منابع مشابه
Well-posedness and scalarization in vector optimization
In this paper we study several existing notions of well-posedness for vector optimization problems. We distinguish them into two classes and we establish the hierarchical structure of their relationships. Moreover, we relate vector well-posedness and well-posedness of an appropriate scalarization. This approach allows us to show that, under some compactness assumption, quasiconvex problems are ...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملMinimal Invasion: an Optimal L∞ State Constraint Problem
In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton m...
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کامل